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Functional imaging of brain activity based on changes in blood flow does 

not supply information about the relative timing of brief bursts of neu- 

ral activity in different brain areas1' 2. Multichannel electric or magnetic 

recordings from the scalp provide high temporal resolution, but are not 

easily decomposed into the separate activities of multiple brain networks. 

We report here a method for the blind separation of event-related brain 

responses into spatially stationary and temporally independent subcompo- 

nents using an Independent Component Analysis algorithm3. Applied to 

electroencephalographic responses from an auditory detection task4, each 

of the most active identified sources accounted for all or part of a previ- 

ously identified response component. This spatiotemporal decomposition 

was robust to changes in sensors and input data length, and was stable 

within subjects. The method can be used to assess the timing, strength, 

and stability of event-related activity in brain networks during cognitive 

tasks, regardless of source location. 



Electroencephalographic (EEG) and magnetoencephalographic (MEG) signals recorded 

from scalp sensors register the integrated activity arising from a large number of local 

neural processes whose temporal coherence is highly variable5. Event-related poten- 

tials (ERPs) elicited by sensory stimuli or time locked to experimental events represent 

a sum of subcomponents originating in different brain areas6. These subcomponents 

may overlap temporally and spatially, making their separation problematic and their 

localization ambiguous7. Here, we propose a method for determining these subcompo- 

nents under the assumption that EEG and MEG signals, including evoked responses, 

arise from mutually independent activities of neurons in a small number of spatially 

stationary brain networks. ': 

Previous decompositions of evoked responses using principal component analysis 

used only second-order correlational information and assumed each source had the 

same time course of activation in every experimental condition8. The algorithm we use 

is based on an 'infomax' neural network3- 9> 10. It finds, by stochastic gradient ascent, 

a matrix, W, which maximizes the entropy11, H(y), of an ensemble of 'sphered' input 

vectors {xs}, linearly transformed and sigmoidally compressed (u = Wxs, y = g(u)). 

The 'unmixing' matrix W performs source separation, while the sigmoidal nonlinear- 

ity 5Ü provides necessary higher-order statistical information. Initial sphering of the 

zero-mean input data12 (xs = Px, where P = 2(xxT)-2) speeds convergence. W is 

then initialized to the identity matrix (I) and iteratively adjusted using small batches 

of data vectors drawn randomly from {x,} without substitution, according to: 

AW = e^^WTW = e(I + yur) W, (1) 

where e is the learning rate and vector y has elements y{ = (d/dui)ln(dyi/dui) The 

(WTW) 'natural gradient' term in the update equation13 avoids matrix inversions 



and speeds convergence. We use the logistic nonlinearity, $(«,■) = (1 + exp(-Ui))-1, 

for which y{ = 1 - 2?/,-. Further details and references about the algorithm appear in 

3, 13, 14? 0^5. related approaches and background material in 10- 15> 16> 17> 18. 

When ICA is trained on EEG data (Fig. 1), the rows of the resultant matrix (WP) 

are linear spatial filters which, applied to the input data, produce source activity 

waveforms (WPx). The columns of the inverse weight matrix (WP)"1 represent 

the projection weights from the ICA sources to the sensor array. ICA sources may 

be spatially distributed, so they need not correspond to single peaks in functional 

imaging measurements. The minimum number of time points needed for the method 

appears to be several times the number of recording.channels, which in turn must.be 

larger than the number of sources to be separated. 

We first applied the ICA algorithm to 300-s EEG epochs to demonstrate that the 

algorithm can segregate brain from muscle activity and can track psychophysiolog- 

ical state changes19. To test the performance of the ICA algorithm in separating 

multiple strong and weak brain sources, we then performed numerical simulations 

using a three-shell spherical head model20. Results suggested that the algorithm can 

successfully separate the independent activities of stronger brain sources from those 

of weaker signal and noise sources, even when they overlap in time and space21. 

Next, we applied the ICA algorithm to 1-s ERPs time locked to the detected 

and undetected noise-burst targets (Fig. 2a) presented in an experiment in which a 

subject was asked to detect weak noise-burst targets continuously during a half-hour 

session4. Results of the analysis consisted of 15 ICA sources (Fig. 2b), including one 

source (Ul) accounting for the positive 320-ms component of the response to unde- - 

tected targets and a separate source (Dl) accounting for the positive 320-ms detected- 



target response component. Three more sources (U2-4) with overlapping activations 

accounted for the broad negativity peaking at 432 ms in the undetected-target re- 

sponse. Source D2 accounted for the positive detected-target response component 

peaking near the median motor response latency (406 ms). Three other sources (Sl- 

3) together composed the auditory steady-state response (SSR)22 produced by a 39 

Hz click train delivered continuously during the experiment. The projected scalp dis- 

tributions of all these sources were distinct (although not orthogonal) and summed 

to the scalp distributions of the corresponding response components (Fig. 3). We 

presume the four remaining sources mixed activity from multiple weak sources. 

Both the activity waveforms and the scalp projections of the ICA sources with-, 

largest scalp projections proved robust to changes in initial weights, number and 

placement of electrodes, epoch lengths, and number of training conditions (Fig. 4). 

Nearly identical ICA sources were recovered from responses collected on different days 

from the same subject (Figs. 3a, 3b, 4a), and similar sources from different subjects 

in the same experiment (Fig. 4b). ICA accounted for the conventionally-defined 

ERP components of the data (major response peaks and the SSR) as sums of activity 

of one to three ICA sources. Although the algorithm used no temporal sequence 

information, several of the identified sources were active only during a brief interval 

(50-300 ms), suggesting that their activity may represent spatiotemporally distinct 

processing steps. 

ICA can be applied conveniently to event-related electric or magnetic responses 

from any number of available channels and experimental conditions. It attempts 

to measure what independent activities compose its training data without directly 

specifying where these activities are located.    The method appears promising for 



measuring the effects of experimental variables on evoked-response subcomponents 

representing rapid stages of brain information processing, particularly when these 

overlap in time and spatial projection. 
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Figure Legends 

Figure 1 - Schematic overview of Independent Component Analysis (ICA) of evoked 

brain responses. In the figure, highly-correlated electroencephalographic (EEG) au- 

ditory event-related potentials (ERPs) (b) averaging responses to stimulus onsets 

recorded from three scalp channels (a) are separated by ICA (c) into the indepen- 

dent activities of three ICA brain sources (d). The ICA training network (c) consists 

of a single layer of weights W summed through a sigmoidal nonlinearity g(). The 

rows of the trained ICA weight matrix W are linear spatial filters each passing ac- 

tivity arising from a single ICA source. Filtering the input data with these filters 

produces the event-related activity waveforms for each source (d). Columns of the" 

inverse weight matrix represent the projections of each source on the sensor array, 

here indicated by interpolated scalp potential maps (e). 

Figure 2 - ICA decomposition of averaged 14-channel ERPs obtained from one 

subject in a sustained auditory detection experiment4. 

(a) Responses to (blue traces) detected (n=209) and  (red traces) undetected 

(n=81) slow-onset noise-burst targets. 

(b) Source activity waveforms for the resulting 14 ICA sources during detected 

(blue traces) and undetected (red traces) response epochs. Seven sources (here labeled 

Dl-3 and Ul-4) are activated for 50-300 ms during one or both responses, while three 

sources (Sl-3) compose the auditory steady-state response (SSR)22 to a click train 

presented throughout the experiment at one eighth the EEG sampling rate. The four 

unlabeled sources may be mixtures of multiple weak event-related and spontaneous 

EEG and noise sources. 
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(c) Projected activity of sources Ul-4 (colored traces) superimposed on the scalp 

waveforms of the undetected-target response (from a) (grey traces). Note that source 

Ul accounts for the central positive peak near 300 ms, whereas the succeeding nega- 

tivity is decomposed into three source components (U2-4). 

(d) (grey traces) Scalp waveforms from the detected-target response (a) and (col- 

ored traces) projected scalp activity of three ICA sources (Dl-3). 

METHODS: The subject pressed a button each time he heard a noise-burst target 

(mean frequency, 10/min; duration, 350 ms; rise time, 150 ms; intensity, 6 dB sen- 

sation level) embedded in a continuous stream of 62 dB white noise during a 28-min 

session. Brief, task-irrelevant tones (50 ms, 72 dB, 568 Hz) also were presented at 2-4. 

s intervals. EEG was collected (sampling rate, 312.5 Hz; pass band 0.1-100 Hz) from 

thirteen scalp electrodes referred to the right mastoid, and from a bipolar diagonal 

electroocular (EOG) placement. See 4 for further details. ICA input was the two 1- 

sec (312-point) ERP vectors shown in (a), with block size (presented data points per 

learning step) 10 and learning rate annealed from 0.0006 to 0.00001 during training. 

Figure 3 - Projected scalp topographies and reliability of the labeled ICA sources 

in Fig. 2b. 

(a) (heads) Scalp topographies of the major ICA sources (Dl-3) of the detected- 

target response, (traces) Source waveforms for sources Dl-3 in two sessions from the 

same subject, separately analyzed (and colored as in Fig. 2d). Source Dl has a left 

central distribution, while source D2 is active at the median response time (406 ms) 

and has midline parietal and precentral extrema compatible with an origin in or near . 

motor cortex. Source D3 accounts for portion of the late EOG activity in the ERP 
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record. 

(b) (heads) Projected scalp topographies and replicability of ICA sources Ul-4 

of the undetected-target response, (traces) Source waveforms for sources Ul-4 in 

the same two sessions, analyzed separately and colored as in Fig. 2c. Sources Ul-2 

have similar central distributions, while sources U3-4 have prefrontal or extraocular 

extrema. 

(c) ICA decomposition of the 39-Hz auditory SSR in the detected-target ERP 

(Fig. 2a). (heads) Topographic maps, individually scaled, (leftmost traces) SSR scalp 

topography at its maximum (16 ms). (right traces) Projected scalp topographies for 

ICA sources Sl-3. Si has a bilateral frontal distribution compatible with bilateral 

sources in the auditory cortices23, while S2 has a bilateral parietal distribution. S3 is 

largest in EOG and prefrontal channels. Together, sources Sl-3 account for 95.3% of 

total variance in the input SSR. 

METHODS: SSR waveforms were derived from the detected-target ERP (Fig. 2a) 

by averaging successive 25.6-ms ERP time segments. Topographic mapping used 

spherical spline interpolation2"*. 

Figure 4 - Stability of the ICA source decomposition. 

(a) Reproducibility of ICA source waveforms obtained from separate analyses of 

detected-target (blue) and undetected-target (red) ERPs from the session shown in 

Fig. 2a and from a second session for the same subject. To test the dependence of 

the ICA decomposition on the sensor array used in the analysis, different subsets of 

11 of the 14 scalp channels were used in each analysis (head plots). Highly similar . 

source waveforms appeared in both analyses. 
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(b) ICA source waveforms and topographies of ICA source D2 (Fig. 2b) analogues 

obtained in five separate decompositions of (left column) the grand-mean detected- 

target response from 11 subjects and (right columns)vesponses from two separate 

sessions on each of 2 subjects. 

(c) Stability of the source waveform for source Dl recovered in separate analyses of 

input data sets consisting of from one to three 1-s ERPs (see key). ICA decompositions 

of each input data set included one source whose activity and scalp topography (not 

shown) in response to detected targets matched that of source Dl. 

(d) Effect of reducing the number of scalp sensors on the stability of source Ul. 

As the number of randomly-selected EEG channels in the input data was decreased, 

from 14 to 4, an ICA source was repeatedly obtained whose activity waveform (solid 

red line) and projected scalp activity (dashed blue line) in the selected channels were 

correlated with those of source Ul. Median correlations for 100 randomly-selected 

channel subsets are shown. In the same analyses, most subsets of 6 or more input 

channels produced sources strongly resembling sources U2, U3, Dl, D2, and SI. 
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